
AI::NeuralNet::Simple - An easy to use backprop neural net.
The second argument is the number of iterations to train the set. If this argument is not provided here, you may use the iterations() method to set it (prior to calling train_set(), of course).
AI::FANN - Perl wrapper for the Fast Artificial Neural ... - MetaCPAN
Two classes are used: AI::FANN that wraps the C struct fann type and AI::FANN::TrainData that wraps struct fann_train_data. Prefixes and common parts on the C function names referring to …
AI::NaiveBayes - A Bayesian classifier - metacpan.org
Creation of AI::NaiveBayes classifier object out of training data is done by AI::NaiveBayes::Learner. For quick start you can use the limited train class method that trains …
AI::NeuralNet::Mesh - An optimized, accurate neural network
Note: when using a ramp () activatior, train the net at least TWICE on the data set, because the first time the ramp () function searches for the top value in the inputs, and therefore, results …
AI-MXNet-1.6 - Perl interface to MXNet machine learning library ...
Jun 23, 2023 · examples/sparse/matrix_factorization/train.pl examples/sparse/wide_deep/README.md examples/sparse/wide_deep/get_data.sh …
Client Challenge - MetaCPAN
Machine Learning in Perl, Using the RPerl Optimizing Compiler
Paws::MachineLearning - Perl Interface to AWS Amazon Machine …
If you plan to use the DataSource to train an MLModel, the DataSource also requires a recipe. A recipe describes how each input variable will be used in training an MLModel.
Algorithm::SVM - Perl bindings for the libsvm Support Vector …
The model file should be of the format produced by the svm-train program (distributed with the libsvm library) or from the $svm->save () method. New SVM's can be created using the …
Client Challenge - MetaCPAN
Automatically Learns Decision Trees
Net::Z3950::SimpleServer - Simple Perl API for building Z39.50 …
dylan "bob dylan" @or "dylan" "zimmerman" @set Result-1 @or @and bob dylan @set Result-1 @and @attr 1=1 "bob dylan" @attr 1=4 "slow train coming" @attrset @attr 4=1 @attr 1=4 "self …